Metamath Proof Explorer


Theorem nfiu1

Description: Bound-variable hypothesis builder for indexed union. (Contributed by NM, 12-Oct-2003) Avoid ax-11 , ax-12 . (Revised by SN, 14-May-2025)

Ref Expression
Assertion nfiu1
|- F/_ x U_ x e. A B

Proof

Step Hyp Ref Expression
1 eliun
 |-  ( y e. U_ x e. A B <-> E. x e. A y e. B )
2 nfre1
 |-  F/ x E. x e. A y e. B
3 1 2 nfxfr
 |-  F/ x y e. U_ x e. A B
4 3 nfci
 |-  F/_ x U_ x e. A B