Step |
Hyp |
Ref |
Expression |
1 |
|
nfixpw.1 |
|- F/_ y A |
2 |
|
nfixpw.2 |
|- F/_ y B |
3 |
|
df-ixp |
|- X_ x e. A B = { z | ( z Fn { x | x e. A } /\ A. x e. A ( z ` x ) e. B ) } |
4 |
|
nfcv |
|- F/_ y z |
5 |
|
nfcv |
|- F/_ y x |
6 |
5 1
|
nfel |
|- F/ y x e. A |
7 |
6
|
nfab |
|- F/_ y { x | x e. A } |
8 |
7
|
a1i |
|- ( T. -> F/_ y { x | x e. A } ) |
9 |
8
|
mptru |
|- F/_ y { x | x e. A } |
10 |
4 9
|
nffn |
|- F/ y z Fn { x | x e. A } |
11 |
|
df-ral |
|- ( A. x e. A ( z ` x ) e. B <-> A. x ( x e. A -> ( z ` x ) e. B ) ) |
12 |
|
nftru |
|- F/ x T. |
13 |
6
|
a1i |
|- ( T. -> F/ y x e. A ) |
14 |
4
|
a1i |
|- ( T. -> F/_ y z ) |
15 |
5
|
a1i |
|- ( T. -> F/_ y x ) |
16 |
14 15
|
nffvd |
|- ( T. -> F/_ y ( z ` x ) ) |
17 |
2
|
a1i |
|- ( T. -> F/_ y B ) |
18 |
16 17
|
nfeld |
|- ( T. -> F/ y ( z ` x ) e. B ) |
19 |
13 18
|
nfimd |
|- ( T. -> F/ y ( x e. A -> ( z ` x ) e. B ) ) |
20 |
12 19
|
nfald |
|- ( T. -> F/ y A. x ( x e. A -> ( z ` x ) e. B ) ) |
21 |
20
|
mptru |
|- F/ y A. x ( x e. A -> ( z ` x ) e. B ) |
22 |
11 21
|
nfxfr |
|- F/ y A. x e. A ( z ` x ) e. B |
23 |
10 22
|
nfan |
|- F/ y ( z Fn { x | x e. A } /\ A. x e. A ( z ` x ) e. B ) |
24 |
23
|
nfab |
|- F/_ y { z | ( z Fn { x | x e. A } /\ A. x e. A ( z ` x ) e. B ) } |
25 |
3 24
|
nfcxfr |
|- F/_ y X_ x e. A B |