Metamath Proof Explorer


Theorem nfixpw

Description: Bound-variable hypothesis builder for indexed Cartesian product. Version of nfixp with a disjoint variable condition, which does not require ax-13 . (Contributed by Mario Carneiro, 15-Oct-2016) (Revised by Gino Giotto, 26-Jan-2024)

Ref Expression
Hypotheses nfixpw.1
|- F/_ y A
nfixpw.2
|- F/_ y B
Assertion nfixpw
|- F/_ y X_ x e. A B

Proof

Step Hyp Ref Expression
1 nfixpw.1
 |-  F/_ y A
2 nfixpw.2
 |-  F/_ y B
3 df-ixp
 |-  X_ x e. A B = { z | ( z Fn { x | x e. A } /\ A. x e. A ( z ` x ) e. B ) }
4 nfcv
 |-  F/_ y z
5 nfcv
 |-  F/_ y x
6 5 1 nfel
 |-  F/ y x e. A
7 6 nfab
 |-  F/_ y { x | x e. A }
8 7 a1i
 |-  ( T. -> F/_ y { x | x e. A } )
9 8 mptru
 |-  F/_ y { x | x e. A }
10 4 9 nffn
 |-  F/ y z Fn { x | x e. A }
11 df-ral
 |-  ( A. x e. A ( z ` x ) e. B <-> A. x ( x e. A -> ( z ` x ) e. B ) )
12 nftru
 |-  F/ x T.
13 6 a1i
 |-  ( T. -> F/ y x e. A )
14 4 a1i
 |-  ( T. -> F/_ y z )
15 5 a1i
 |-  ( T. -> F/_ y x )
16 14 15 nffvd
 |-  ( T. -> F/_ y ( z ` x ) )
17 2 a1i
 |-  ( T. -> F/_ y B )
18 16 17 nfeld
 |-  ( T. -> F/ y ( z ` x ) e. B )
19 13 18 nfimd
 |-  ( T. -> F/ y ( x e. A -> ( z ` x ) e. B ) )
20 12 19 nfald
 |-  ( T. -> F/ y A. x ( x e. A -> ( z ` x ) e. B ) )
21 20 mptru
 |-  F/ y A. x ( x e. A -> ( z ` x ) e. B )
22 11 21 nfxfr
 |-  F/ y A. x e. A ( z ` x ) e. B
23 10 22 nfan
 |-  F/ y ( z Fn { x | x e. A } /\ A. x e. A ( z ` x ) e. B )
24 23 nfab
 |-  F/_ y { z | ( z Fn { x | x e. A } /\ A. x e. A ( z ` x ) e. B ) }
25 3 24 nfcxfr
 |-  F/_ y X_ x e. A B