Metamath Proof Explorer


Theorem nfmo1

Description: Bound-variable hypothesis builder for the at-most-one quantifier. (Contributed by NM, 8-Mar-1995) (Revised by Mario Carneiro, 7-Oct-2016) Adapt to new definition. (Revised by BJ, 1-Oct-2022)

Ref Expression
Assertion nfmo1
|- F/ x E* x ph

Proof

Step Hyp Ref Expression
1 df-mo
 |-  ( E* x ph <-> E. y A. x ( ph -> x = y ) )
2 nfa1
 |-  F/ x A. x ( ph -> x = y )
3 2 nfex
 |-  F/ x E. y A. x ( ph -> x = y )
4 1 3 nfxfr
 |-  F/ x E* x ph