Metamath Proof Explorer


Theorem nfmod

Description: Bound-variable hypothesis builder for the at-most-one quantifier. Deduction version of nfmo . Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker nfmodv when possible. (Contributed by Mario Carneiro, 14-Nov-2016) (New usage is discouraged.)

Ref Expression
Hypotheses nfmod.1
|- F/ y ph
nfmod.2
|- ( ph -> F/ x ps )
Assertion nfmod
|- ( ph -> F/ x E* y ps )

Proof

Step Hyp Ref Expression
1 nfmod.1
 |-  F/ y ph
2 nfmod.2
 |-  ( ph -> F/ x ps )
3 2 adantr
 |-  ( ( ph /\ -. A. x x = y ) -> F/ x ps )
4 1 3 nfmod2
 |-  ( ph -> F/ x E* y ps )