Metamath Proof Explorer


Theorem nfmod2

Description: Bound-variable hypothesis builder for the at-most-one quantifier. Usage of this theorem is discouraged because it depends on ax-13 . See nfmodv for a version replacing the distinctor with a disjoint variable condition, not requiring ax-13 . (Contributed by Mario Carneiro, 14-Nov-2016) Avoid df-eu . (Revised by BJ, 14-Oct-2022) (New usage is discouraged.)

Ref Expression
Hypotheses nfmod2.1
|- F/ y ph
nfmod2.2
|- ( ( ph /\ -. A. x x = y ) -> F/ x ps )
Assertion nfmod2
|- ( ph -> F/ x E* y ps )

Proof

Step Hyp Ref Expression
1 nfmod2.1
 |-  F/ y ph
2 nfmod2.2
 |-  ( ( ph /\ -. A. x x = y ) -> F/ x ps )
3 df-mo
 |-  ( E* y ps <-> E. z A. y ( ps -> y = z ) )
4 nfv
 |-  F/ z ph
5 nfeqf1
 |-  ( -. A. x x = y -> F/ x y = z )
6 5 adantl
 |-  ( ( ph /\ -. A. x x = y ) -> F/ x y = z )
7 2 6 nfimd
 |-  ( ( ph /\ -. A. x x = y ) -> F/ x ( ps -> y = z ) )
8 1 7 nfald2
 |-  ( ph -> F/ x A. y ( ps -> y = z ) )
9 4 8 nfexd
 |-  ( ph -> F/ x E. z A. y ( ps -> y = z ) )
10 3 9 nfxfrd
 |-  ( ph -> F/ x E* y ps )