Description: Bound-variable hypothesis builder for the at-most-one quantifier. Usage of this theorem is discouraged because it depends on ax-13 . See nfmodv for a version replacing the distinctor with a disjoint variable condition, not requiring ax-13 . (Contributed by Mario Carneiro, 14-Nov-2016) Avoid df-eu . (Revised by BJ, 14-Oct-2022) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | nfmod2.1 | |- F/ y ph |
|
nfmod2.2 | |- ( ( ph /\ -. A. x x = y ) -> F/ x ps ) |
||
Assertion | nfmod2 | |- ( ph -> F/ x E* y ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfmod2.1 | |- F/ y ph |
|
2 | nfmod2.2 | |- ( ( ph /\ -. A. x x = y ) -> F/ x ps ) |
|
3 | df-mo | |- ( E* y ps <-> E. z A. y ( ps -> y = z ) ) |
|
4 | nfv | |- F/ z ph |
|
5 | nfeqf1 | |- ( -. A. x x = y -> F/ x y = z ) |
|
6 | 5 | adantl | |- ( ( ph /\ -. A. x x = y ) -> F/ x y = z ) |
7 | 2 6 | nfimd | |- ( ( ph /\ -. A. x x = y ) -> F/ x ( ps -> y = z ) ) |
8 | 1 7 | nfald2 | |- ( ph -> F/ x A. y ( ps -> y = z ) ) |
9 | 4 8 | nfexd | |- ( ph -> F/ x E. z A. y ( ps -> y = z ) ) |
10 | 3 9 | nfxfrd | |- ( ph -> F/ x E* y ps ) |