Metamath Proof Explorer


Theorem nfmodv

Description: Bound-variable hypothesis builder for the at-most-one quantifier. See nfmod for a version without disjoint variable conditions but requiring ax-13 . (Contributed by Mario Carneiro, 14-Nov-2016) (Revised by BJ, 28-Jan-2023)

Ref Expression
Hypotheses nfmodv.1
|- F/ y ph
nfmodv.2
|- ( ph -> F/ x ps )
Assertion nfmodv
|- ( ph -> F/ x E* y ps )

Proof

Step Hyp Ref Expression
1 nfmodv.1
 |-  F/ y ph
2 nfmodv.2
 |-  ( ph -> F/ x ps )
3 df-mo
 |-  ( E* y ps <-> E. z A. y ( ps -> y = z ) )
4 nfv
 |-  F/ z ph
5 nfvd
 |-  ( ph -> F/ x y = z )
6 2 5 nfimd
 |-  ( ph -> F/ x ( ps -> y = z ) )
7 1 6 nfald
 |-  ( ph -> F/ x A. y ( ps -> y = z ) )
8 4 7 nfexd
 |-  ( ph -> F/ x E. z A. y ( ps -> y = z ) )
9 3 8 nfxfrd
 |-  ( ph -> F/ x E* y ps )