Metamath Proof Explorer


Theorem nfmpo2

Description: Bound-variable hypothesis builder for an operation in maps-to notation. (Contributed by NM, 27-Aug-2013)

Ref Expression
Assertion nfmpo2
|- F/_ y ( x e. A , y e. B |-> C )

Proof

Step Hyp Ref Expression
1 df-mpo
 |-  ( x e. A , y e. B |-> C ) = { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ z = C ) }
2 nfoprab2
 |-  F/_ y { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ z = C ) }
3 1 2 nfcxfr
 |-  F/_ y ( x e. A , y e. B |-> C )