Metamath Proof Explorer


Theorem nfnaewOLD

Description: Obsolete version of nfnaew as of 25-Sep-2024. (Contributed by Mario Carneiro, 11-Aug-2016) (Revised by Gino Giotto, 10-Jan-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion nfnaewOLD
|- F/ z -. A. x x = y

Proof

Step Hyp Ref Expression
1 hbaev
 |-  ( A. x x = y -> A. z A. x x = y )
2 1 nf5i
 |-  F/ z A. x x = y
3 2 nfn
 |-  F/ z -. A. x x = y