Metamath Proof Explorer


Theorem nfnbi

Description: A variable is nonfree in a proposition if and only if it is so in its negation. (Contributed by BJ, 6-May-2019) (Proof shortened by Wolf Lammen, 6-Oct-2024)

Ref Expression
Assertion nfnbi
|- ( F/ x ph <-> F/ x -. ph )

Proof

Step Hyp Ref Expression
1 exnal
 |-  ( E. x -. ph <-> -. A. x ph )
2 1 imbi1i
 |-  ( ( E. x -. ph -> A. x -. ph ) <-> ( -. A. x ph -> A. x -. ph ) )
3 df-nf
 |-  ( F/ x -. ph <-> ( E. x -. ph -> A. x -. ph ) )
4 nf4
 |-  ( F/ x ph <-> ( -. A. x ph -> A. x -. ph ) )
5 2 3 4 3bitr4ri
 |-  ( F/ x ph <-> F/ x -. ph )