Metamath Proof Explorer


Theorem nfnel

Description: Bound-variable hypothesis builder for negated membership. (Contributed by David Abernethy, 26-Jun-2011) (Revised by Mario Carneiro, 7-Oct-2016)

Ref Expression
Hypotheses nfnel.1
|- F/_ x A
nfnel.2
|- F/_ x B
Assertion nfnel
|- F/ x A e/ B

Proof

Step Hyp Ref Expression
1 nfnel.1
 |-  F/_ x A
2 nfnel.2
 |-  F/_ x B
3 df-nel
 |-  ( A e/ B <-> -. A e. B )
4 1 2 nfel
 |-  F/ x A e. B
5 4 nfn
 |-  F/ x -. A e. B
6 3 5 nfxfr
 |-  F/ x A e/ B