Metamath Proof Explorer


Theorem nfnf1

Description: The setvar x is not free in F/ x ph . (Contributed by Mario Carneiro, 11-Aug-2016) Remove dependency on ax-12 . (Revised by Wolf Lammen, 12-Oct-2021)

Ref Expression
Assertion nfnf1
|- F/ x F/ x ph

Proof

Step Hyp Ref Expression
1 df-nf
 |-  ( F/ x ph <-> ( E. x ph -> A. x ph ) )
2 nfe1
 |-  F/ x E. x ph
3 nfa1
 |-  F/ x A. x ph
4 2 3 nfim
 |-  F/ x ( E. x ph -> A. x ph )
5 1 4 nfxfr
 |-  F/ x F/ x ph