Metamath Proof Explorer


Theorem nfnfc

Description: Hypothesis builder for F/_ y A . (Contributed by Mario Carneiro, 11-Aug-2016) Remove dependency on ax-13 . (Revised by Wolf Lammen, 10-Dec-2019)

Ref Expression
Hypothesis nfnfc.1
|- F/_ x A
Assertion nfnfc
|- F/ x F/_ y A

Proof

Step Hyp Ref Expression
1 nfnfc.1
 |-  F/_ x A
2 df-nfc
 |-  ( F/_ y A <-> A. z F/ y z e. A )
3 df-nfc
 |-  ( F/_ x A <-> A. z F/ x z e. A )
4 1 3 mpbi
 |-  A. z F/ x z e. A
5 4 spi
 |-  F/ x z e. A
6 5 nfnf
 |-  F/ x F/ y z e. A
7 6 nfal
 |-  F/ x A. z F/ y z e. A
8 2 7 nfxfr
 |-  F/ x F/_ y A