Metamath Proof Explorer


Theorem nfnth

Description: No variable is (effectively) free in a non-theorem. (Contributed by Mario Carneiro, 6-Dec-2016) df-nf changed. (Revised by Wolf Lammen, 12-Sep-2021)

Ref Expression
Hypothesis nfnth.1
|- -. ph
Assertion nfnth
|- F/ x ph

Proof

Step Hyp Ref Expression
1 nfnth.1
 |-  -. ph
2 nfntht2
 |-  ( A. x -. ph -> F/ x ph )
3 2 1 mpg
 |-  F/ x ph