Description: Closed form of nfnth . (Contributed by BJ, 16-Sep-2021) (Proof shortened by Wolf Lammen, 4-Sep-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | nfntht | |- ( -. E. x ph -> F/ x ph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.21 | |- ( -. E. x ph -> ( E. x ph -> A. x ph ) ) |
|
2 | 1 | nfd | |- ( -. E. x ph -> F/ x ph ) |