Description: Closed form of nfnth . (Contributed by BJ, 16-Sep-2021) (Proof shortened by Wolf Lammen, 4-Sep-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nfntht2 | |- ( A. x -. ph -> F/ x ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alnex | |- ( A. x -. ph <-> -. E. x ph ) |
|
| 2 | nfntht | |- ( -. E. x ph -> F/ x ph ) |
|
| 3 | 1 2 | sylbi | |- ( A. x -. ph -> F/ x ph ) |