Description: Hypothesis builder for function operation. (Contributed by Mario Carneiro, 20-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nfof.1 | |- F/_ x R |
|
| Assertion | nfof | |- F/_ x oF R |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfof.1 | |- F/_ x R |
|
| 2 | df-of | |- oF R = ( u e. _V , v e. _V |-> ( w e. ( dom u i^i dom v ) |-> ( ( u ` w ) R ( v ` w ) ) ) ) |
|
| 3 | nfcv | |- F/_ x _V |
|
| 4 | nfcv | |- F/_ x ( dom u i^i dom v ) |
|
| 5 | nfcv | |- F/_ x ( u ` w ) |
|
| 6 | nfcv | |- F/_ x ( v ` w ) |
|
| 7 | 5 1 6 | nfov | |- F/_ x ( ( u ` w ) R ( v ` w ) ) |
| 8 | 4 7 | nfmpt | |- F/_ x ( w e. ( dom u i^i dom v ) |-> ( ( u ` w ) R ( v ` w ) ) ) |
| 9 | 3 3 8 | nfmpo | |- F/_ x ( u e. _V , v e. _V |-> ( w e. ( dom u i^i dom v ) |-> ( ( u ` w ) R ( v ` w ) ) ) ) |
| 10 | 2 9 | nfcxfr | |- F/_ x oF R |