Description: Bound-variable hypothesis builder for ordered pairs. (Contributed by NM, 14-Nov-1995)
Ref | Expression | ||
---|---|---|---|
Hypotheses | nfop.1 | |- F/_ x A |
|
nfop.2 | |- F/_ x B |
||
Assertion | nfop | |- F/_ x <. A , B >. |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfop.1 | |- F/_ x A |
|
2 | nfop.2 | |- F/_ x B |
|
3 | dfopif | |- <. A , B >. = if ( ( A e. _V /\ B e. _V ) , { { A } , { A , B } } , (/) ) |
|
4 | 1 | nfel1 | |- F/ x A e. _V |
5 | 2 | nfel1 | |- F/ x B e. _V |
6 | 4 5 | nfan | |- F/ x ( A e. _V /\ B e. _V ) |
7 | 1 | nfsn | |- F/_ x { A } |
8 | 1 2 | nfpr | |- F/_ x { A , B } |
9 | 7 8 | nfpr | |- F/_ x { { A } , { A , B } } |
10 | nfcv | |- F/_ x (/) |
|
11 | 6 9 10 | nfif | |- F/_ x if ( ( A e. _V /\ B e. _V ) , { { A } , { A , B } } , (/) ) |
12 | 3 11 | nfcxfr | |- F/_ x <. A , B >. |