Metamath Proof Explorer


Theorem nfop

Description: Bound-variable hypothesis builder for ordered pairs. (Contributed by NM, 14-Nov-1995)

Ref Expression
Hypotheses nfop.1
|- F/_ x A
nfop.2
|- F/_ x B
Assertion nfop
|- F/_ x <. A , B >.

Proof

Step Hyp Ref Expression
1 nfop.1
 |-  F/_ x A
2 nfop.2
 |-  F/_ x B
3 dfopif
 |-  <. A , B >. = if ( ( A e. _V /\ B e. _V ) , { { A } , { A , B } } , (/) )
4 1 nfel1
 |-  F/ x A e. _V
5 2 nfel1
 |-  F/ x B e. _V
6 4 5 nfan
 |-  F/ x ( A e. _V /\ B e. _V )
7 1 nfsn
 |-  F/_ x { A }
8 1 2 nfpr
 |-  F/_ x { A , B }
9 7 8 nfpr
 |-  F/_ x { { A } , { A , B } }
10 nfcv
 |-  F/_ x (/)
11 6 9 10 nfif
 |-  F/_ x if ( ( A e. _V /\ B e. _V ) , { { A } , { A , B } } , (/) )
12 3 11 nfcxfr
 |-  F/_ x <. A , B >.