Metamath Proof Explorer


Theorem nfopab

Description: Bound-variable hypothesis builder for class abstraction. (Contributed by NM, 1-Sep-1999) Remove disjoint variable conditions. (Revised by Andrew Salmon, 11-Jul-2011) (Revised by Scott Fenton, 26-Oct-2024)

Ref Expression
Hypothesis nfopab.1
|- F/ z ph
Assertion nfopab
|- F/_ z { <. x , y >. | ph }

Proof

Step Hyp Ref Expression
1 nfopab.1
 |-  F/ z ph
2 nftru
 |-  F/ x T.
3 nftru
 |-  F/ y T.
4 1 a1i
 |-  ( T. -> F/ z ph )
5 2 3 4 nfopabd
 |-  ( T. -> F/_ z { <. x , y >. | ph } )
6 5 mptru
 |-  F/_ z { <. x , y >. | ph }