Metamath Proof Explorer


Theorem nfopab1

Description: The first abstraction variable in an ordered-pair class abstraction is effectively not free. (Contributed by NM, 16-May-1995) (Revised by Mario Carneiro, 14-Oct-2016)

Ref Expression
Assertion nfopab1
|- F/_ x { <. x , y >. | ph }

Proof

Step Hyp Ref Expression
1 df-opab
 |-  { <. x , y >. | ph } = { z | E. x E. y ( z = <. x , y >. /\ ph ) }
2 nfe1
 |-  F/ x E. x E. y ( z = <. x , y >. /\ ph )
3 2 nfab
 |-  F/_ x { z | E. x E. y ( z = <. x , y >. /\ ph ) }
4 1 3 nfcxfr
 |-  F/_ x { <. x , y >. | ph }