| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nfopabd.1 |
|- F/ x ph |
| 2 |
|
nfopabd.2 |
|- F/ y ph |
| 3 |
|
nfopabd.4 |
|- ( ph -> F/ z ps ) |
| 4 |
|
df-opab |
|- { <. x , y >. | ps } = { w | E. x E. y ( w = <. x , y >. /\ ps ) } |
| 5 |
|
nfv |
|- F/ w ph |
| 6 |
|
nfvd |
|- ( ph -> F/ z w = <. x , y >. ) |
| 7 |
6 3
|
nfand |
|- ( ph -> F/ z ( w = <. x , y >. /\ ps ) ) |
| 8 |
2 7
|
nfexd |
|- ( ph -> F/ z E. y ( w = <. x , y >. /\ ps ) ) |
| 9 |
1 8
|
nfexd |
|- ( ph -> F/ z E. x E. y ( w = <. x , y >. /\ ps ) ) |
| 10 |
5 9
|
nfabdw |
|- ( ph -> F/_ z { w | E. x E. y ( w = <. x , y >. /\ ps ) } ) |
| 11 |
4 10
|
nfcxfrd |
|- ( ph -> F/_ z { <. x , y >. | ps } ) |