Step |
Hyp |
Ref |
Expression |
1 |
|
nfopabd.1 |
|- F/ x ph |
2 |
|
nfopabd.2 |
|- F/ y ph |
3 |
|
nfopabd.4 |
|- ( ph -> F/ z ps ) |
4 |
|
df-opab |
|- { <. x , y >. | ps } = { w | E. x E. y ( w = <. x , y >. /\ ps ) } |
5 |
|
nfv |
|- F/ w ph |
6 |
|
nfvd |
|- ( ph -> F/ z w = <. x , y >. ) |
7 |
6 3
|
nfand |
|- ( ph -> F/ z ( w = <. x , y >. /\ ps ) ) |
8 |
2 7
|
nfexd |
|- ( ph -> F/ z E. y ( w = <. x , y >. /\ ps ) ) |
9 |
1 8
|
nfexd |
|- ( ph -> F/ z E. x E. y ( w = <. x , y >. /\ ps ) ) |
10 |
5 9
|
nfabdw |
|- ( ph -> F/_ z { w | E. x E. y ( w = <. x , y >. /\ ps ) } ) |
11 |
4 10
|
nfcxfrd |
|- ( ph -> F/_ z { <. x , y >. | ps } ) |