Step |
Hyp |
Ref |
Expression |
1 |
|
nfopd.2 |
|- ( ph -> F/_ x A ) |
2 |
|
nfopd.3 |
|- ( ph -> F/_ x B ) |
3 |
|
nfaba1 |
|- F/_ x { z | A. x z e. A } |
4 |
|
nfaba1 |
|- F/_ x { z | A. x z e. B } |
5 |
3 4
|
nfop |
|- F/_ x <. { z | A. x z e. A } , { z | A. x z e. B } >. |
6 |
|
nfnfc1 |
|- F/ x F/_ x A |
7 |
|
nfnfc1 |
|- F/ x F/_ x B |
8 |
6 7
|
nfan |
|- F/ x ( F/_ x A /\ F/_ x B ) |
9 |
|
abidnf |
|- ( F/_ x A -> { z | A. x z e. A } = A ) |
10 |
9
|
adantr |
|- ( ( F/_ x A /\ F/_ x B ) -> { z | A. x z e. A } = A ) |
11 |
|
abidnf |
|- ( F/_ x B -> { z | A. x z e. B } = B ) |
12 |
11
|
adantl |
|- ( ( F/_ x A /\ F/_ x B ) -> { z | A. x z e. B } = B ) |
13 |
10 12
|
opeq12d |
|- ( ( F/_ x A /\ F/_ x B ) -> <. { z | A. x z e. A } , { z | A. x z e. B } >. = <. A , B >. ) |
14 |
8 13
|
nfceqdf |
|- ( ( F/_ x A /\ F/_ x B ) -> ( F/_ x <. { z | A. x z e. A } , { z | A. x z e. B } >. <-> F/_ x <. A , B >. ) ) |
15 |
1 2 14
|
syl2anc |
|- ( ph -> ( F/_ x <. { z | A. x z e. A } , { z | A. x z e. B } >. <-> F/_ x <. A , B >. ) ) |
16 |
5 15
|
mpbii |
|- ( ph -> F/_ x <. A , B >. ) |