Metamath Proof Explorer


Theorem nfoprab3

Description: The abstraction variables in an operation class abstraction are not free. (Contributed by NM, 22-Aug-2013)

Ref Expression
Assertion nfoprab3
|- F/_ z { <. <. x , y >. , z >. | ph }

Proof

Step Hyp Ref Expression
1 df-oprab
 |-  { <. <. x , y >. , z >. | ph } = { w | E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) }
2 nfe1
 |-  F/ z E. z ( w = <. <. x , y >. , z >. /\ ph )
3 2 nfex
 |-  F/ z E. y E. z ( w = <. <. x , y >. , z >. /\ ph )
4 3 nfex
 |-  F/ z E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ph )
5 4 nfab
 |-  F/_ z { w | E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) }
6 1 5 nfcxfr
 |-  F/_ z { <. <. x , y >. , z >. | ph }