Metamath Proof Explorer


Theorem nfov

Description: Bound-variable hypothesis builder for operation value. (Contributed by NM, 4-May-2004)

Ref Expression
Hypotheses nfov.1
|- F/_ x A
nfov.2
|- F/_ x F
nfov.3
|- F/_ x B
Assertion nfov
|- F/_ x ( A F B )

Proof

Step Hyp Ref Expression
1 nfov.1
 |-  F/_ x A
2 nfov.2
 |-  F/_ x F
3 nfov.3
 |-  F/_ x B
4 1 a1i
 |-  ( T. -> F/_ x A )
5 2 a1i
 |-  ( T. -> F/_ x F )
6 3 a1i
 |-  ( T. -> F/_ x B )
7 4 5 6 nfovd
 |-  ( T. -> F/_ x ( A F B ) )
8 7 mptru
 |-  F/_ x ( A F B )