Step |
Hyp |
Ref |
Expression |
1 |
|
eldif |
|- ( x e. ( A \ dom ( F \ _I ) ) <-> ( x e. A /\ -. x e. dom ( F \ _I ) ) ) |
2 |
|
fnelfp |
|- ( ( F Fn A /\ x e. A ) -> ( x e. dom ( F i^i _I ) <-> ( F ` x ) = x ) ) |
3 |
2
|
pm5.32da |
|- ( F Fn A -> ( ( x e. A /\ x e. dom ( F i^i _I ) ) <-> ( x e. A /\ ( F ` x ) = x ) ) ) |
4 |
|
inss1 |
|- ( F i^i _I ) C_ F |
5 |
|
dmss |
|- ( ( F i^i _I ) C_ F -> dom ( F i^i _I ) C_ dom F ) |
6 |
4 5
|
ax-mp |
|- dom ( F i^i _I ) C_ dom F |
7 |
|
fndm |
|- ( F Fn A -> dom F = A ) |
8 |
6 7
|
sseqtrid |
|- ( F Fn A -> dom ( F i^i _I ) C_ A ) |
9 |
8
|
sseld |
|- ( F Fn A -> ( x e. dom ( F i^i _I ) -> x e. A ) ) |
10 |
9
|
pm4.71rd |
|- ( F Fn A -> ( x e. dom ( F i^i _I ) <-> ( x e. A /\ x e. dom ( F i^i _I ) ) ) ) |
11 |
|
fnelnfp |
|- ( ( F Fn A /\ x e. A ) -> ( x e. dom ( F \ _I ) <-> ( F ` x ) =/= x ) ) |
12 |
11
|
notbid |
|- ( ( F Fn A /\ x e. A ) -> ( -. x e. dom ( F \ _I ) <-> -. ( F ` x ) =/= x ) ) |
13 |
|
nne |
|- ( -. ( F ` x ) =/= x <-> ( F ` x ) = x ) |
14 |
12 13
|
bitrdi |
|- ( ( F Fn A /\ x e. A ) -> ( -. x e. dom ( F \ _I ) <-> ( F ` x ) = x ) ) |
15 |
14
|
pm5.32da |
|- ( F Fn A -> ( ( x e. A /\ -. x e. dom ( F \ _I ) ) <-> ( x e. A /\ ( F ` x ) = x ) ) ) |
16 |
3 10 15
|
3bitr4rd |
|- ( F Fn A -> ( ( x e. A /\ -. x e. dom ( F \ _I ) ) <-> x e. dom ( F i^i _I ) ) ) |
17 |
1 16
|
syl5bb |
|- ( F Fn A -> ( x e. ( A \ dom ( F \ _I ) ) <-> x e. dom ( F i^i _I ) ) ) |
18 |
17
|
eqrdv |
|- ( F Fn A -> ( A \ dom ( F \ _I ) ) = dom ( F i^i _I ) ) |