| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eldif |  |-  ( x e. ( A \ dom ( F \ _I ) ) <-> ( x e. A /\ -. x e. dom ( F \ _I ) ) ) | 
						
							| 2 |  | fnelfp |  |-  ( ( F Fn A /\ x e. A ) -> ( x e. dom ( F i^i _I ) <-> ( F ` x ) = x ) ) | 
						
							| 3 | 2 | pm5.32da |  |-  ( F Fn A -> ( ( x e. A /\ x e. dom ( F i^i _I ) ) <-> ( x e. A /\ ( F ` x ) = x ) ) ) | 
						
							| 4 |  | inss1 |  |-  ( F i^i _I ) C_ F | 
						
							| 5 |  | dmss |  |-  ( ( F i^i _I ) C_ F -> dom ( F i^i _I ) C_ dom F ) | 
						
							| 6 | 4 5 | ax-mp |  |-  dom ( F i^i _I ) C_ dom F | 
						
							| 7 |  | fndm |  |-  ( F Fn A -> dom F = A ) | 
						
							| 8 | 6 7 | sseqtrid |  |-  ( F Fn A -> dom ( F i^i _I ) C_ A ) | 
						
							| 9 | 8 | sseld |  |-  ( F Fn A -> ( x e. dom ( F i^i _I ) -> x e. A ) ) | 
						
							| 10 | 9 | pm4.71rd |  |-  ( F Fn A -> ( x e. dom ( F i^i _I ) <-> ( x e. A /\ x e. dom ( F i^i _I ) ) ) ) | 
						
							| 11 |  | fnelnfp |  |-  ( ( F Fn A /\ x e. A ) -> ( x e. dom ( F \ _I ) <-> ( F ` x ) =/= x ) ) | 
						
							| 12 | 11 | notbid |  |-  ( ( F Fn A /\ x e. A ) -> ( -. x e. dom ( F \ _I ) <-> -. ( F ` x ) =/= x ) ) | 
						
							| 13 |  | nne |  |-  ( -. ( F ` x ) =/= x <-> ( F ` x ) = x ) | 
						
							| 14 | 12 13 | bitrdi |  |-  ( ( F Fn A /\ x e. A ) -> ( -. x e. dom ( F \ _I ) <-> ( F ` x ) = x ) ) | 
						
							| 15 | 14 | pm5.32da |  |-  ( F Fn A -> ( ( x e. A /\ -. x e. dom ( F \ _I ) ) <-> ( x e. A /\ ( F ` x ) = x ) ) ) | 
						
							| 16 | 3 10 15 | 3bitr4rd |  |-  ( F Fn A -> ( ( x e. A /\ -. x e. dom ( F \ _I ) ) <-> x e. dom ( F i^i _I ) ) ) | 
						
							| 17 | 1 16 | bitrid |  |-  ( F Fn A -> ( x e. ( A \ dom ( F \ _I ) ) <-> x e. dom ( F i^i _I ) ) ) | 
						
							| 18 | 17 | eqrdv |  |-  ( F Fn A -> ( A \ dom ( F \ _I ) ) = dom ( F i^i _I ) ) |