| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nfpo.r |
|- F/_ x R |
| 2 |
|
nfpo.a |
|- F/_ x A |
| 3 |
|
df-po |
|- ( R Po A <-> A. a e. A A. b e. A A. c e. A ( -. a R a /\ ( ( a R b /\ b R c ) -> a R c ) ) ) |
| 4 |
|
nfcv |
|- F/_ x a |
| 5 |
4 1 4
|
nfbr |
|- F/ x a R a |
| 6 |
5
|
nfn |
|- F/ x -. a R a |
| 7 |
|
nfcv |
|- F/_ x b |
| 8 |
4 1 7
|
nfbr |
|- F/ x a R b |
| 9 |
|
nfcv |
|- F/_ x c |
| 10 |
7 1 9
|
nfbr |
|- F/ x b R c |
| 11 |
8 10
|
nfan |
|- F/ x ( a R b /\ b R c ) |
| 12 |
4 1 9
|
nfbr |
|- F/ x a R c |
| 13 |
11 12
|
nfim |
|- F/ x ( ( a R b /\ b R c ) -> a R c ) |
| 14 |
6 13
|
nfan |
|- F/ x ( -. a R a /\ ( ( a R b /\ b R c ) -> a R c ) ) |
| 15 |
2 14
|
nfralw |
|- F/ x A. c e. A ( -. a R a /\ ( ( a R b /\ b R c ) -> a R c ) ) |
| 16 |
2 15
|
nfralw |
|- F/ x A. b e. A A. c e. A ( -. a R a /\ ( ( a R b /\ b R c ) -> a R c ) ) |
| 17 |
2 16
|
nfralw |
|- F/ x A. a e. A A. b e. A A. c e. A ( -. a R a /\ ( ( a R b /\ b R c ) -> a R c ) ) |
| 18 |
3 17
|
nfxfr |
|- F/ x R Po A |