Metamath Proof Explorer


Theorem nfpr

Description: Bound-variable hypothesis builder for unordered pairs. (Contributed by NM, 14-Nov-1995)

Ref Expression
Hypotheses nfpr.1
|- F/_ x A
nfpr.2
|- F/_ x B
Assertion nfpr
|- F/_ x { A , B }

Proof

Step Hyp Ref Expression
1 nfpr.1
 |-  F/_ x A
2 nfpr.2
 |-  F/_ x B
3 dfpr2
 |-  { A , B } = { y | ( y = A \/ y = B ) }
4 1 nfeq2
 |-  F/ x y = A
5 2 nfeq2
 |-  F/ x y = B
6 4 5 nfor
 |-  F/ x ( y = A \/ y = B )
7 6 nfab
 |-  F/_ x { y | ( y = A \/ y = B ) }
8 3 7 nfcxfr
 |-  F/_ x { A , B }