Metamath Proof Explorer


Theorem nfpred

Description: Bound-variable hypothesis builder for the predecessor class. (Contributed by Scott Fenton, 9-Jun-2018)

Ref Expression
Hypotheses nfpred.1
|- F/_ x R
nfpred.2
|- F/_ x A
nfpred.3
|- F/_ x X
Assertion nfpred
|- F/_ x Pred ( R , A , X )

Proof

Step Hyp Ref Expression
1 nfpred.1
 |-  F/_ x R
2 nfpred.2
 |-  F/_ x A
3 nfpred.3
 |-  F/_ x X
4 df-pred
 |-  Pred ( R , A , X ) = ( A i^i ( `' R " { X } ) )
5 1 nfcnv
 |-  F/_ x `' R
6 3 nfsn
 |-  F/_ x { X }
7 5 6 nfima
 |-  F/_ x ( `' R " { X } )
8 2 7 nfin
 |-  F/_ x ( A i^i ( `' R " { X } ) )
9 4 8 nfcxfr
 |-  F/_ x Pred ( R , A , X )