Metamath Proof Explorer


Theorem nfrab

Description: A variable not free in a wff remains so in a restricted class abstraction. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker nfrabw when possible. (Contributed by NM, 13-Oct-2003) (Revised by Mario Carneiro, 9-Oct-2016) (New usage is discouraged.)

Ref Expression
Hypotheses nfrab.1
|- F/ x ph
nfrab.2
|- F/_ x A
Assertion nfrab
|- F/_ x { y e. A | ph }

Proof

Step Hyp Ref Expression
1 nfrab.1
 |-  F/ x ph
2 nfrab.2
 |-  F/_ x A
3 df-rab
 |-  { y e. A | ph } = { y | ( y e. A /\ ph ) }
4 nftru
 |-  F/ y T.
5 2 nfcri
 |-  F/ x z e. A
6 eleq1w
 |-  ( z = y -> ( z e. A <-> y e. A ) )
7 5 6 dvelimnf
 |-  ( -. A. x x = y -> F/ x y e. A )
8 1 a1i
 |-  ( -. A. x x = y -> F/ x ph )
9 7 8 nfand
 |-  ( -. A. x x = y -> F/ x ( y e. A /\ ph ) )
10 9 adantl
 |-  ( ( T. /\ -. A. x x = y ) -> F/ x ( y e. A /\ ph ) )
11 4 10 nfabd2
 |-  ( T. -> F/_ x { y | ( y e. A /\ ph ) } )
12 11 mptru
 |-  F/_ x { y | ( y e. A /\ ph ) }
13 3 12 nfcxfr
 |-  F/_ x { y e. A | ph }