Step |
Hyp |
Ref |
Expression |
1 |
|
nfrab.1 |
|- F/ x ph |
2 |
|
nfrab.2 |
|- F/_ x A |
3 |
|
df-rab |
|- { y e. A | ph } = { y | ( y e. A /\ ph ) } |
4 |
|
nftru |
|- F/ y T. |
5 |
2
|
nfcri |
|- F/ x z e. A |
6 |
|
eleq1w |
|- ( z = y -> ( z e. A <-> y e. A ) ) |
7 |
5 6
|
dvelimnf |
|- ( -. A. x x = y -> F/ x y e. A ) |
8 |
1
|
a1i |
|- ( -. A. x x = y -> F/ x ph ) |
9 |
7 8
|
nfand |
|- ( -. A. x x = y -> F/ x ( y e. A /\ ph ) ) |
10 |
9
|
adantl |
|- ( ( T. /\ -. A. x x = y ) -> F/ x ( y e. A /\ ph ) ) |
11 |
4 10
|
nfabd2 |
|- ( T. -> F/_ x { y | ( y e. A /\ ph ) } ) |
12 |
11
|
mptru |
|- F/_ x { y | ( y e. A /\ ph ) } |
13 |
3 12
|
nfcxfr |
|- F/_ x { y e. A | ph } |