Metamath Proof Explorer


Theorem nfrabw

Description: A variable not free in a wff remains so in a restricted class abstraction. Version of nfrab with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 13-Oct-2003) (Revised by Gino Giotto, 10-Jan-2024)

Ref Expression
Hypotheses nfrabw.1
|- F/ x ph
nfrabw.2
|- F/_ x A
Assertion nfrabw
|- F/_ x { y e. A | ph }

Proof

Step Hyp Ref Expression
1 nfrabw.1
 |-  F/ x ph
2 nfrabw.2
 |-  F/_ x A
3 df-rab
 |-  { y e. A | ph } = { y | ( y e. A /\ ph ) }
4 nftru
 |-  F/ y T.
5 2 nfcri
 |-  F/ x y e. A
6 5 a1i
 |-  ( T. -> F/ x y e. A )
7 1 a1i
 |-  ( T. -> F/ x ph )
8 6 7 nfand
 |-  ( T. -> F/ x ( y e. A /\ ph ) )
9 4 8 nfabdw
 |-  ( T. -> F/_ x { y | ( y e. A /\ ph ) } )
10 9 mptru
 |-  F/_ x { y | ( y e. A /\ ph ) }
11 3 10 nfcxfr
 |-  F/_ x { y e. A | ph }