Metamath Proof Explorer


Theorem nfraldwOLD

Description: Obsolete version of nfraldw as of 24-Sep-2024. (Contributed by NM, 15-Feb-2013) (Revised by Gino Giotto, 10-Jan-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses nfraldw.1
|- F/ y ph
nfraldw.2
|- ( ph -> F/_ x A )
nfraldw.3
|- ( ph -> F/ x ps )
Assertion nfraldwOLD
|- ( ph -> F/ x A. y e. A ps )

Proof

Step Hyp Ref Expression
1 nfraldw.1
 |-  F/ y ph
2 nfraldw.2
 |-  ( ph -> F/_ x A )
3 nfraldw.3
 |-  ( ph -> F/ x ps )
4 df-ral
 |-  ( A. y e. A ps <-> A. y ( y e. A -> ps ) )
5 nfcvd
 |-  ( ph -> F/_ x y )
6 5 2 nfeld
 |-  ( ph -> F/ x y e. A )
7 6 3 nfimd
 |-  ( ph -> F/ x ( y e. A -> ps ) )
8 1 7 nfald
 |-  ( ph -> F/ x A. y ( y e. A -> ps ) )
9 4 8 nfxfrd
 |-  ( ph -> F/ x A. y e. A ps )