Metamath Proof Explorer


Theorem nfrd

Description: Consequence of the definition of not-free in a context. (Contributed by Wolf Lammen, 15-Oct-2021)

Ref Expression
Hypothesis nfrd.1
|- ( ph -> F/ x ps )
Assertion nfrd
|- ( ph -> ( E. x ps -> A. x ps ) )

Proof

Step Hyp Ref Expression
1 nfrd.1
 |-  ( ph -> F/ x ps )
2 df-nf
 |-  ( F/ x ps <-> ( E. x ps -> A. x ps ) )
3 1 2 sylib
 |-  ( ph -> ( E. x ps -> A. x ps ) )