| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nfrdg.1 |
|- F/_ x F |
| 2 |
|
nfrdg.2 |
|- F/_ x A |
| 3 |
|
df-rdg |
|- rec ( F , A ) = recs ( ( g e. _V |-> if ( g = (/) , A , if ( Lim dom g , U. ran g , ( F ` ( g ` U. dom g ) ) ) ) ) ) |
| 4 |
|
nfcv |
|- F/_ x _V |
| 5 |
|
nfv |
|- F/ x g = (/) |
| 6 |
|
nfv |
|- F/ x Lim dom g |
| 7 |
|
nfcv |
|- F/_ x U. ran g |
| 8 |
|
nfcv |
|- F/_ x ( g ` U. dom g ) |
| 9 |
1 8
|
nffv |
|- F/_ x ( F ` ( g ` U. dom g ) ) |
| 10 |
6 7 9
|
nfif |
|- F/_ x if ( Lim dom g , U. ran g , ( F ` ( g ` U. dom g ) ) ) |
| 11 |
5 2 10
|
nfif |
|- F/_ x if ( g = (/) , A , if ( Lim dom g , U. ran g , ( F ` ( g ` U. dom g ) ) ) ) |
| 12 |
4 11
|
nfmpt |
|- F/_ x ( g e. _V |-> if ( g = (/) , A , if ( Lim dom g , U. ran g , ( F ` ( g ` U. dom g ) ) ) ) ) |
| 13 |
12
|
nfrecs |
|- F/_ x recs ( ( g e. _V |-> if ( g = (/) , A , if ( Lim dom g , U. ran g , ( F ` ( g ` U. dom g ) ) ) ) ) ) |
| 14 |
3 13
|
nfcxfr |
|- F/_ x rec ( F , A ) |