Metamath Proof Explorer


Theorem nfreu

Description: Bound-variable hypothesis builder for restricted unique existence. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker nfreuw when possible. (Contributed by NM, 30-Oct-2010) (Revised by Mario Carneiro, 8-Oct-2016) (New usage is discouraged.)

Ref Expression
Hypotheses nfreu.1
|- F/_ x A
nfreu.2
|- F/ x ph
Assertion nfreu
|- F/ x E! y e. A ph

Proof

Step Hyp Ref Expression
1 nfreu.1
 |-  F/_ x A
2 nfreu.2
 |-  F/ x ph
3 nftru
 |-  F/ y T.
4 1 a1i
 |-  ( T. -> F/_ x A )
5 2 a1i
 |-  ( T. -> F/ x ph )
6 3 4 5 nfreud
 |-  ( T. -> F/ x E! y e. A ph )
7 6 mptru
 |-  F/ x E! y e. A ph