| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nfrmod.1 |
|- F/ y ph |
| 2 |
|
nfrmod.2 |
|- ( ph -> F/_ x A ) |
| 3 |
|
nfrmod.3 |
|- ( ph -> F/ x ps ) |
| 4 |
|
df-reu |
|- ( E! y e. A ps <-> E! y ( y e. A /\ ps ) ) |
| 5 |
|
nfcvf |
|- ( -. A. x x = y -> F/_ x y ) |
| 6 |
5
|
adantl |
|- ( ( ph /\ -. A. x x = y ) -> F/_ x y ) |
| 7 |
2
|
adantr |
|- ( ( ph /\ -. A. x x = y ) -> F/_ x A ) |
| 8 |
6 7
|
nfeld |
|- ( ( ph /\ -. A. x x = y ) -> F/ x y e. A ) |
| 9 |
3
|
adantr |
|- ( ( ph /\ -. A. x x = y ) -> F/ x ps ) |
| 10 |
8 9
|
nfand |
|- ( ( ph /\ -. A. x x = y ) -> F/ x ( y e. A /\ ps ) ) |
| 11 |
1 10
|
nfeud2 |
|- ( ph -> F/ x E! y ( y e. A /\ ps ) ) |
| 12 |
4 11
|
nfxfrd |
|- ( ph -> F/ x E! y e. A ps ) |