Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
nfreuw
Metamath Proof Explorer
Description: Bound-variable hypothesis builder for restricted unique existence.
Version of nfreu with a disjoint variable condition, which does not
require ax-13 . (Contributed by NM , 30-Oct-2010) (Revised by Gino
Giotto , 10-Jan-2024)
Ref
Expression
Hypotheses
nfreuw.1
|- F/_ x A
nfreuw.2
|- F/ x ph
Assertion
nfreuw
|- F/ x E! y e. A ph
Proof
Step
Hyp
Ref
Expression
1
nfreuw.1
|- F/_ x A
2
nfreuw.2
|- F/ x ph
3
df-reu
|- ( E! y e. A ph <-> E! y ( y e. A /\ ph ) )
4
nftru
|- F/ y T.
5
nfcvd
|- ( T. -> F/_ x y )
6
1
a1i
|- ( T. -> F/_ x A )
7
5 6
nfeld
|- ( T. -> F/ x y e. A )
8
2
a1i
|- ( T. -> F/ x ph )
9
7 8
nfand
|- ( T. -> F/ x ( y e. A /\ ph ) )
10
4 9
nfeudw
|- ( T. -> F/ x E! y ( y e. A /\ ph ) )
11
3 10
nfxfrd
|- ( T. -> F/ x E! y e. A ph )
12
11
mptru
|- F/ x E! y e. A ph