Metamath Proof Explorer


Theorem nfreuw

Description: Bound-variable hypothesis builder for restricted unique existence. Version of nfreu with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 30-Oct-2010) (Revised by Gino Giotto, 10-Jan-2024)

Ref Expression
Hypotheses nfreuw.1
|- F/_ x A
nfreuw.2
|- F/ x ph
Assertion nfreuw
|- F/ x E! y e. A ph

Proof

Step Hyp Ref Expression
1 nfreuw.1
 |-  F/_ x A
2 nfreuw.2
 |-  F/ x ph
3 df-reu
 |-  ( E! y e. A ph <-> E! y ( y e. A /\ ph ) )
4 nftru
 |-  F/ y T.
5 nfcvd
 |-  ( T. -> F/_ x y )
6 1 a1i
 |-  ( T. -> F/_ x A )
7 5 6 nfeld
 |-  ( T. -> F/ x y e. A )
8 2 a1i
 |-  ( T. -> F/ x ph )
9 7 8 nfand
 |-  ( T. -> F/ x ( y e. A /\ ph ) )
10 4 9 nfeudw
 |-  ( T. -> F/ x E! y ( y e. A /\ ph ) )
11 3 10 nfxfrd
 |-  ( T. -> F/ x E! y e. A ph )
12 11 mptru
 |-  F/ x E! y e. A ph