Metamath Proof Explorer


Theorem nfri

Description: Consequence of the definition of not-free. (Contributed by Wolf Lammen, 16-Sep-2021)

Ref Expression
Hypothesis nfri.1
|- F/ x ph
Assertion nfri
|- ( E. x ph -> A. x ph )

Proof

Step Hyp Ref Expression
1 nfri.1
 |-  F/ x ph
2 df-nf
 |-  ( F/ x ph <-> ( E. x ph -> A. x ph ) )
3 1 2 mpbi
 |-  ( E. x ph -> A. x ph )