Metamath Proof Explorer


Theorem nfriota

Description: A variable not free in a wff remains so in a restricted iota descriptor. (Contributed by NM, 12-Oct-2011)

Ref Expression
Hypotheses nfriota.1
|- F/ x ph
nfriota.2
|- F/_ x A
Assertion nfriota
|- F/_ x ( iota_ y e. A ph )

Proof

Step Hyp Ref Expression
1 nfriota.1
 |-  F/ x ph
2 nfriota.2
 |-  F/_ x A
3 nftru
 |-  F/ y T.
4 1 a1i
 |-  ( T. -> F/ x ph )
5 2 a1i
 |-  ( T. -> F/_ x A )
6 3 4 5 nfriotadw
 |-  ( T. -> F/_ x ( iota_ y e. A ph ) )
7 6 mptru
 |-  F/_ x ( iota_ y e. A ph )