| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nfriotad.1 |  |-  F/ y ph | 
						
							| 2 |  | nfriotad.2 |  |-  ( ph -> F/ x ps ) | 
						
							| 3 |  | nfriotad.3 |  |-  ( ph -> F/_ x A ) | 
						
							| 4 |  | df-riota |  |-  ( iota_ y e. A ps ) = ( iota y ( y e. A /\ ps ) ) | 
						
							| 5 |  | nfnae |  |-  F/ y -. A. x x = y | 
						
							| 6 | 1 5 | nfan |  |-  F/ y ( ph /\ -. A. x x = y ) | 
						
							| 7 |  | nfcvf |  |-  ( -. A. x x = y -> F/_ x y ) | 
						
							| 8 | 7 | adantl |  |-  ( ( ph /\ -. A. x x = y ) -> F/_ x y ) | 
						
							| 9 | 3 | adantr |  |-  ( ( ph /\ -. A. x x = y ) -> F/_ x A ) | 
						
							| 10 | 8 9 | nfeld |  |-  ( ( ph /\ -. A. x x = y ) -> F/ x y e. A ) | 
						
							| 11 | 2 | adantr |  |-  ( ( ph /\ -. A. x x = y ) -> F/ x ps ) | 
						
							| 12 | 10 11 | nfand |  |-  ( ( ph /\ -. A. x x = y ) -> F/ x ( y e. A /\ ps ) ) | 
						
							| 13 | 6 12 | nfiotad |  |-  ( ( ph /\ -. A. x x = y ) -> F/_ x ( iota y ( y e. A /\ ps ) ) ) | 
						
							| 14 | 13 | ex |  |-  ( ph -> ( -. A. x x = y -> F/_ x ( iota y ( y e. A /\ ps ) ) ) ) | 
						
							| 15 |  | nfiota1 |  |-  F/_ y ( iota y ( y e. A /\ ps ) ) | 
						
							| 16 |  | eqidd |  |-  ( A. x x = y -> ( iota y ( y e. A /\ ps ) ) = ( iota y ( y e. A /\ ps ) ) ) | 
						
							| 17 | 16 | drnfc1 |  |-  ( A. x x = y -> ( F/_ x ( iota y ( y e. A /\ ps ) ) <-> F/_ y ( iota y ( y e. A /\ ps ) ) ) ) | 
						
							| 18 | 15 17 | mpbiri |  |-  ( A. x x = y -> F/_ x ( iota y ( y e. A /\ ps ) ) ) | 
						
							| 19 | 14 18 | pm2.61d2 |  |-  ( ph -> F/_ x ( iota y ( y e. A /\ ps ) ) ) | 
						
							| 20 | 4 19 | nfcxfrd |  |-  ( ph -> F/_ x ( iota_ y e. A ps ) ) |