Metamath Proof Explorer


Theorem nfriotadw

Description: Deduction version of nfriota with a disjoint variable condition, which contrary to nfriotad does not require ax-13 . (Contributed by NM, 18-Feb-2013) (Revised by Gino Giotto, 26-Jan-2024)

Ref Expression
Hypotheses nfriotadw.1
|- F/ y ph
nfriotadw.2
|- ( ph -> F/ x ps )
nfriotadw.3
|- ( ph -> F/_ x A )
Assertion nfriotadw
|- ( ph -> F/_ x ( iota_ y e. A ps ) )

Proof

Step Hyp Ref Expression
1 nfriotadw.1
 |-  F/ y ph
2 nfriotadw.2
 |-  ( ph -> F/ x ps )
3 nfriotadw.3
 |-  ( ph -> F/_ x A )
4 df-riota
 |-  ( iota_ y e. A ps ) = ( iota y ( y e. A /\ ps ) )
5 nfnaew
 |-  F/ y -. A. x x = y
6 1 5 nfan
 |-  F/ y ( ph /\ -. A. x x = y )
7 nfcvd
 |-  ( -. A. x x = y -> F/_ x y )
8 7 adantl
 |-  ( ( ph /\ -. A. x x = y ) -> F/_ x y )
9 3 adantr
 |-  ( ( ph /\ -. A. x x = y ) -> F/_ x A )
10 8 9 nfeld
 |-  ( ( ph /\ -. A. x x = y ) -> F/ x y e. A )
11 2 adantr
 |-  ( ( ph /\ -. A. x x = y ) -> F/ x ps )
12 10 11 nfand
 |-  ( ( ph /\ -. A. x x = y ) -> F/ x ( y e. A /\ ps ) )
13 6 12 nfiotadw
 |-  ( ( ph /\ -. A. x x = y ) -> F/_ x ( iota y ( y e. A /\ ps ) ) )
14 13 ex
 |-  ( ph -> ( -. A. x x = y -> F/_ x ( iota y ( y e. A /\ ps ) ) ) )
15 nfiota1
 |-  F/_ y ( iota y ( y e. A /\ ps ) )
16 biidd
 |-  ( A. x x = y -> ( w e. ( iota y ( y e. A /\ ps ) ) <-> w e. ( iota y ( y e. A /\ ps ) ) ) )
17 16 drnf1v
 |-  ( A. x x = y -> ( F/ x w e. ( iota y ( y e. A /\ ps ) ) <-> F/ y w e. ( iota y ( y e. A /\ ps ) ) ) )
18 17 albidv
 |-  ( A. x x = y -> ( A. w F/ x w e. ( iota y ( y e. A /\ ps ) ) <-> A. w F/ y w e. ( iota y ( y e. A /\ ps ) ) ) )
19 df-nfc
 |-  ( F/_ x ( iota y ( y e. A /\ ps ) ) <-> A. w F/ x w e. ( iota y ( y e. A /\ ps ) ) )
20 df-nfc
 |-  ( F/_ y ( iota y ( y e. A /\ ps ) ) <-> A. w F/ y w e. ( iota y ( y e. A /\ ps ) ) )
21 18 19 20 3bitr4g
 |-  ( A. x x = y -> ( F/_ x ( iota y ( y e. A /\ ps ) ) <-> F/_ y ( iota y ( y e. A /\ ps ) ) ) )
22 15 21 mpbiri
 |-  ( A. x x = y -> F/_ x ( iota y ( y e. A /\ ps ) ) )
23 14 22 pm2.61d2
 |-  ( ph -> F/_ x ( iota y ( y e. A /\ ps ) ) )
24 4 23 nfcxfrd
 |-  ( ph -> F/_ x ( iota_ y e. A ps ) )