Step |
Hyp |
Ref |
Expression |
1 |
|
nfreu.1 |
|- F/_ x A |
2 |
|
nfreu.2 |
|- F/ x ph |
3 |
|
df-rmo |
|- ( E* y e. A ph <-> E* y ( y e. A /\ ph ) ) |
4 |
|
nftru |
|- F/ y T. |
5 |
|
nfcvf |
|- ( -. A. x x = y -> F/_ x y ) |
6 |
1
|
a1i |
|- ( -. A. x x = y -> F/_ x A ) |
7 |
5 6
|
nfeld |
|- ( -. A. x x = y -> F/ x y e. A ) |
8 |
2
|
a1i |
|- ( -. A. x x = y -> F/ x ph ) |
9 |
7 8
|
nfand |
|- ( -. A. x x = y -> F/ x ( y e. A /\ ph ) ) |
10 |
9
|
adantl |
|- ( ( T. /\ -. A. x x = y ) -> F/ x ( y e. A /\ ph ) ) |
11 |
4 10
|
nfmod2 |
|- ( T. -> F/ x E* y ( y e. A /\ ph ) ) |
12 |
11
|
mptru |
|- F/ x E* y ( y e. A /\ ph ) |
13 |
3 12
|
nfxfr |
|- F/ x E* y e. A ph |