Step |
Hyp |
Ref |
Expression |
1 |
|
nfreud.1 |
|- F/ y ph |
2 |
|
nfreud.2 |
|- ( ph -> F/_ x A ) |
3 |
|
nfreud.3 |
|- ( ph -> F/ x ps ) |
4 |
|
df-rmo |
|- ( E* y e. A ps <-> E* y ( y e. A /\ ps ) ) |
5 |
|
nfcvf |
|- ( -. A. x x = y -> F/_ x y ) |
6 |
5
|
adantl |
|- ( ( ph /\ -. A. x x = y ) -> F/_ x y ) |
7 |
2
|
adantr |
|- ( ( ph /\ -. A. x x = y ) -> F/_ x A ) |
8 |
6 7
|
nfeld |
|- ( ( ph /\ -. A. x x = y ) -> F/ x y e. A ) |
9 |
3
|
adantr |
|- ( ( ph /\ -. A. x x = y ) -> F/ x ps ) |
10 |
8 9
|
nfand |
|- ( ( ph /\ -. A. x x = y ) -> F/ x ( y e. A /\ ps ) ) |
11 |
1 10
|
nfmod2 |
|- ( ph -> F/ x E* y ( y e. A /\ ps ) ) |
12 |
4 11
|
nfxfrd |
|- ( ph -> F/ x E* y e. A ps ) |