Metamath Proof Explorer


Theorem nfsab

Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016) Add disjoint variable condition to avoid ax-13 . See nfsabg for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 20-Jan-2024)

Ref Expression
Hypothesis nfsab.1
|- F/ x ph
Assertion nfsab
|- F/ x z e. { y | ph }

Proof

Step Hyp Ref Expression
1 nfsab.1
 |-  F/ x ph
2 1 nf5ri
 |-  ( ph -> A. x ph )
3 2 hbab
 |-  ( z e. { y | ph } -> A. x z e. { y | ph } )
4 3 nf5i
 |-  F/ x z e. { y | ph }