Metamath Proof Explorer


Theorem nfsabg

Description: Bound-variable hypothesis builder for a class abstraction. Usage of this theorem is discouraged because it depends on ax-13 . See nfsab for a version with more disjoint variable conditions, but not requiring ax-13 . (Contributed by Mario Carneiro, 11-Aug-2016) (New usage is discouraged.)

Ref Expression
Hypothesis nfsabg.1
|- F/ x ph
Assertion nfsabg
|- F/ x z e. { y | ph }

Proof

Step Hyp Ref Expression
1 nfsabg.1
 |-  F/ x ph
2 1 nf5ri
 |-  ( ph -> A. x ph )
3 2 hbabg
 |-  ( z e. { y | ph } -> A. x z e. { y | ph } )
4 3 nf5i
 |-  F/ x z e. { y | ph }