Metamath Proof Explorer


Theorem nfsb2

Description: Bound-variable hypothesis builder for substitution. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by Mario Carneiro, 4-Oct-2016) (New usage is discouraged.)

Ref Expression
Assertion nfsb2
|- ( -. A. x x = y -> F/ x [ y / x ] ph )

Proof

Step Hyp Ref Expression
1 nfna1
 |-  F/ x -. A. x x = y
2 hbsb2
 |-  ( -. A. x x = y -> ( [ y / x ] ph -> A. x [ y / x ] ph ) )
3 1 2 nf5d
 |-  ( -. A. x x = y -> F/ x [ y / x ] ph )