Step |
Hyp |
Ref |
Expression |
1 |
|
sbequ12 |
|- ( x = y -> ( ph <-> [ y / x ] ph ) ) |
2 |
1
|
sps |
|- ( A. x x = y -> ( ph <-> [ y / x ] ph ) ) |
3 |
2
|
drnf2 |
|- ( A. x x = y -> ( F/ z ph <-> F/ z [ y / x ] ph ) ) |
4 |
3
|
biimpd |
|- ( A. x x = y -> ( F/ z ph -> F/ z [ y / x ] ph ) ) |
5 |
4
|
spsd |
|- ( A. x x = y -> ( A. x F/ z ph -> F/ z [ y / x ] ph ) ) |
6 |
5
|
impcom |
|- ( ( A. x F/ z ph /\ A. x x = y ) -> F/ z [ y / x ] ph ) |
7 |
6
|
a1d |
|- ( ( A. x F/ z ph /\ A. x x = y ) -> ( -. A. z z = y -> F/ z [ y / x ] ph ) ) |
8 |
|
nfnf1 |
|- F/ z F/ z ph |
9 |
8
|
nfal |
|- F/ z A. x F/ z ph |
10 |
|
nfnae |
|- F/ z -. A. x x = y |
11 |
9 10
|
nfan |
|- F/ z ( A. x F/ z ph /\ -. A. x x = y ) |
12 |
|
nfa1 |
|- F/ x A. x F/ z ph |
13 |
|
nfnae |
|- F/ x -. A. x x = y |
14 |
12 13
|
nfan |
|- F/ x ( A. x F/ z ph /\ -. A. x x = y ) |
15 |
|
sp |
|- ( A. x F/ z ph -> F/ z ph ) |
16 |
15
|
adantr |
|- ( ( A. x F/ z ph /\ -. A. x x = y ) -> F/ z ph ) |
17 |
|
nfsb2 |
|- ( -. A. x x = y -> F/ x [ y / x ] ph ) |
18 |
17
|
adantl |
|- ( ( A. x F/ z ph /\ -. A. x x = y ) -> F/ x [ y / x ] ph ) |
19 |
1
|
a1i |
|- ( ( A. x F/ z ph /\ -. A. x x = y ) -> ( x = y -> ( ph <-> [ y / x ] ph ) ) ) |
20 |
11 14 16 18 19
|
dvelimdf |
|- ( ( A. x F/ z ph /\ -. A. x x = y ) -> ( -. A. z z = y -> F/ z [ y / x ] ph ) ) |
21 |
7 20
|
pm2.61dan |
|- ( A. x F/ z ph -> ( -. A. z z = y -> F/ z [ y / x ] ph ) ) |