Metamath Proof Explorer


Theorem nfsb4t

Description: A variable not free in a proposition remains so after substitution in that proposition with a distinct variable (closed form of nfsb4 ). Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 7-Apr-2004) (Revised by Mario Carneiro, 4-Oct-2016) (Proof shortened by Wolf Lammen, 11-May-2018) (New usage is discouraged.)

Ref Expression
Assertion nfsb4t
|- ( A. x F/ z ph -> ( -. A. z z = y -> F/ z [ y / x ] ph ) )

Proof

Step Hyp Ref Expression
1 sbequ12
 |-  ( x = y -> ( ph <-> [ y / x ] ph ) )
2 1 sps
 |-  ( A. x x = y -> ( ph <-> [ y / x ] ph ) )
3 2 drnf2
 |-  ( A. x x = y -> ( F/ z ph <-> F/ z [ y / x ] ph ) )
4 3 biimpd
 |-  ( A. x x = y -> ( F/ z ph -> F/ z [ y / x ] ph ) )
5 4 spsd
 |-  ( A. x x = y -> ( A. x F/ z ph -> F/ z [ y / x ] ph ) )
6 5 impcom
 |-  ( ( A. x F/ z ph /\ A. x x = y ) -> F/ z [ y / x ] ph )
7 6 a1d
 |-  ( ( A. x F/ z ph /\ A. x x = y ) -> ( -. A. z z = y -> F/ z [ y / x ] ph ) )
8 nfnf1
 |-  F/ z F/ z ph
9 8 nfal
 |-  F/ z A. x F/ z ph
10 nfnae
 |-  F/ z -. A. x x = y
11 9 10 nfan
 |-  F/ z ( A. x F/ z ph /\ -. A. x x = y )
12 nfa1
 |-  F/ x A. x F/ z ph
13 nfnae
 |-  F/ x -. A. x x = y
14 12 13 nfan
 |-  F/ x ( A. x F/ z ph /\ -. A. x x = y )
15 sp
 |-  ( A. x F/ z ph -> F/ z ph )
16 15 adantr
 |-  ( ( A. x F/ z ph /\ -. A. x x = y ) -> F/ z ph )
17 nfsb2
 |-  ( -. A. x x = y -> F/ x [ y / x ] ph )
18 17 adantl
 |-  ( ( A. x F/ z ph /\ -. A. x x = y ) -> F/ x [ y / x ] ph )
19 1 a1i
 |-  ( ( A. x F/ z ph /\ -. A. x x = y ) -> ( x = y -> ( ph <-> [ y / x ] ph ) ) )
20 11 14 16 18 19 dvelimdf
 |-  ( ( A. x F/ z ph /\ -. A. x x = y ) -> ( -. A. z z = y -> F/ z [ y / x ] ph ) )
21 7 20 pm2.61dan
 |-  ( A. x F/ z ph -> ( -. A. z z = y -> F/ z [ y / x ] ph ) )