| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sbequ12 |
|- ( x = y -> ( ph <-> [ y / x ] ph ) ) |
| 2 |
1
|
sps |
|- ( A. x x = y -> ( ph <-> [ y / x ] ph ) ) |
| 3 |
2
|
drnf2 |
|- ( A. x x = y -> ( F/ z ph <-> F/ z [ y / x ] ph ) ) |
| 4 |
3
|
biimpd |
|- ( A. x x = y -> ( F/ z ph -> F/ z [ y / x ] ph ) ) |
| 5 |
4
|
spsd |
|- ( A. x x = y -> ( A. x F/ z ph -> F/ z [ y / x ] ph ) ) |
| 6 |
5
|
impcom |
|- ( ( A. x F/ z ph /\ A. x x = y ) -> F/ z [ y / x ] ph ) |
| 7 |
6
|
a1d |
|- ( ( A. x F/ z ph /\ A. x x = y ) -> ( -. A. z z = y -> F/ z [ y / x ] ph ) ) |
| 8 |
|
nfnf1 |
|- F/ z F/ z ph |
| 9 |
8
|
nfal |
|- F/ z A. x F/ z ph |
| 10 |
|
nfnae |
|- F/ z -. A. x x = y |
| 11 |
9 10
|
nfan |
|- F/ z ( A. x F/ z ph /\ -. A. x x = y ) |
| 12 |
|
nfa1 |
|- F/ x A. x F/ z ph |
| 13 |
|
nfnae |
|- F/ x -. A. x x = y |
| 14 |
12 13
|
nfan |
|- F/ x ( A. x F/ z ph /\ -. A. x x = y ) |
| 15 |
|
sp |
|- ( A. x F/ z ph -> F/ z ph ) |
| 16 |
15
|
adantr |
|- ( ( A. x F/ z ph /\ -. A. x x = y ) -> F/ z ph ) |
| 17 |
|
nfsb2 |
|- ( -. A. x x = y -> F/ x [ y / x ] ph ) |
| 18 |
17
|
adantl |
|- ( ( A. x F/ z ph /\ -. A. x x = y ) -> F/ x [ y / x ] ph ) |
| 19 |
1
|
a1i |
|- ( ( A. x F/ z ph /\ -. A. x x = y ) -> ( x = y -> ( ph <-> [ y / x ] ph ) ) ) |
| 20 |
11 14 16 18 19
|
dvelimdf |
|- ( ( A. x F/ z ph /\ -. A. x x = y ) -> ( -. A. z z = y -> F/ z [ y / x ] ph ) ) |
| 21 |
7 20
|
pm2.61dan |
|- ( A. x F/ z ph -> ( -. A. z z = y -> F/ z [ y / x ] ph ) ) |