Metamath Proof Explorer


Theorem nfsbc1d

Description: Deduction version of nfsbc1 . (Contributed by NM, 23-May-2006) (Revised by Mario Carneiro, 12-Oct-2016)

Ref Expression
Hypothesis nfsbc1d.2
|- ( ph -> F/_ x A )
Assertion nfsbc1d
|- ( ph -> F/ x [. A / x ]. ps )

Proof

Step Hyp Ref Expression
1 nfsbc1d.2
 |-  ( ph -> F/_ x A )
2 df-sbc
 |-  ( [. A / x ]. ps <-> A e. { x | ps } )
3 nfab1
 |-  F/_ x { x | ps }
4 3 a1i
 |-  ( ph -> F/_ x { x | ps } )
5 1 4 nfeld
 |-  ( ph -> F/ x A e. { x | ps } )
6 2 5 nfxfrd
 |-  ( ph -> F/ x [. A / x ]. ps )