Metamath Proof Explorer


Theorem nfsbcd

Description: Deduction version of nfsbc . Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker nfsbcdw when possible. (Contributed by NM, 23-Nov-2005) (Revised by Mario Carneiro, 12-Oct-2016) (New usage is discouraged.)

Ref Expression
Hypotheses nfsbcd.1
|- F/ y ph
nfsbcd.2
|- ( ph -> F/_ x A )
nfsbcd.3
|- ( ph -> F/ x ps )
Assertion nfsbcd
|- ( ph -> F/ x [. A / y ]. ps )

Proof

Step Hyp Ref Expression
1 nfsbcd.1
 |-  F/ y ph
2 nfsbcd.2
 |-  ( ph -> F/_ x A )
3 nfsbcd.3
 |-  ( ph -> F/ x ps )
4 df-sbc
 |-  ( [. A / y ]. ps <-> A e. { y | ps } )
5 1 3 nfabd
 |-  ( ph -> F/_ x { y | ps } )
6 2 5 nfeld
 |-  ( ph -> F/ x A e. { y | ps } )
7 4 6 nfxfrd
 |-  ( ph -> F/ x [. A / y ]. ps )