Metamath Proof Explorer


Theorem nfsbcdw

Description: Deduction version of nfsbcw . Version of nfsbcd with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 23-Nov-2005) (Revised by Gino Giotto, 10-Jan-2024)

Ref Expression
Hypotheses nfsbcdw.1
|- F/ y ph
nfsbcdw.2
|- ( ph -> F/_ x A )
nfsbcdw.3
|- ( ph -> F/ x ps )
Assertion nfsbcdw
|- ( ph -> F/ x [. A / y ]. ps )

Proof

Step Hyp Ref Expression
1 nfsbcdw.1
 |-  F/ y ph
2 nfsbcdw.2
 |-  ( ph -> F/_ x A )
3 nfsbcdw.3
 |-  ( ph -> F/ x ps )
4 df-sbc
 |-  ( [. A / y ]. ps <-> A e. { y | ps } )
5 1 3 nfabdw
 |-  ( ph -> F/_ x { y | ps } )
6 2 5 nfeld
 |-  ( ph -> F/ x A e. { y | ps } )
7 4 6 nfxfrd
 |-  ( ph -> F/ x [. A / y ]. ps )