Metamath Proof Explorer


Theorem nfsbd

Description: Deduction version of nfsb . Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 15-Feb-2013) (New usage is discouraged.)

Ref Expression
Hypotheses nfsbd.1
|- F/ x ph
nfsbd.2
|- ( ph -> F/ z ps )
Assertion nfsbd
|- ( ph -> F/ z [ y / x ] ps )

Proof

Step Hyp Ref Expression
1 nfsbd.1
 |-  F/ x ph
2 nfsbd.2
 |-  ( ph -> F/ z ps )
3 1 2 alrimi
 |-  ( ph -> A. x F/ z ps )
4 nfsb4t
 |-  ( A. x F/ z ps -> ( -. A. z z = y -> F/ z [ y / x ] ps ) )
5 3 4 syl
 |-  ( ph -> ( -. A. z z = y -> F/ z [ y / x ] ps ) )
6 axc16nf
 |-  ( A. z z = y -> F/ z [ y / x ] ps )
7 5 6 pm2.61d2
 |-  ( ph -> F/ z [ y / x ] ps )