| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nfseq.1 |
|- F/_ x M |
| 2 |
|
nfseq.2 |
|- F/_ x .+ |
| 3 |
|
nfseq.3 |
|- F/_ x F |
| 4 |
|
df-seq |
|- seq M ( .+ , F ) = ( rec ( ( z e. _V , w e. _V |-> <. ( z + 1 ) , ( w .+ ( F ` ( z + 1 ) ) ) >. ) , <. M , ( F ` M ) >. ) " _om ) |
| 5 |
|
nfcv |
|- F/_ x _V |
| 6 |
|
nfcv |
|- F/_ x ( z + 1 ) |
| 7 |
|
nfcv |
|- F/_ x w |
| 8 |
3 6
|
nffv |
|- F/_ x ( F ` ( z + 1 ) ) |
| 9 |
7 2 8
|
nfov |
|- F/_ x ( w .+ ( F ` ( z + 1 ) ) ) |
| 10 |
6 9
|
nfop |
|- F/_ x <. ( z + 1 ) , ( w .+ ( F ` ( z + 1 ) ) ) >. |
| 11 |
5 5 10
|
nfmpo |
|- F/_ x ( z e. _V , w e. _V |-> <. ( z + 1 ) , ( w .+ ( F ` ( z + 1 ) ) ) >. ) |
| 12 |
3 1
|
nffv |
|- F/_ x ( F ` M ) |
| 13 |
1 12
|
nfop |
|- F/_ x <. M , ( F ` M ) >. |
| 14 |
11 13
|
nfrdg |
|- F/_ x rec ( ( z e. _V , w e. _V |-> <. ( z + 1 ) , ( w .+ ( F ` ( z + 1 ) ) ) >. ) , <. M , ( F ` M ) >. ) |
| 15 |
|
nfcv |
|- F/_ x _om |
| 16 |
14 15
|
nfima |
|- F/_ x ( rec ( ( z e. _V , w e. _V |-> <. ( z + 1 ) , ( w .+ ( F ` ( z + 1 ) ) ) >. ) , <. M , ( F ` M ) >. ) " _om ) |
| 17 |
4 16
|
nfcxfr |
|- F/_ x seq M ( .+ , F ) |